An Efficient Privacy Preserving in MSN using Improved Decision Tree Algorithm
نویسندگان
چکیده
منابع مشابه
An Efficient Privacy Preserving in MSN using Improved Decision Tree Algorithm
Here in this paper, efficient privacy preservation over Mobile Social Networks is implemented to secure attacks over Mobile Social Networks. The Existing methodology implemented for the Friending Mobile Social Networks is efficient which provides an efficient computation of Data and privacy from unauthorized users. Here an efficient Decision Tree based algorithm is implemented using Partition o...
متن کاملPrivacy Preserving Data Mining using Random Decision Tree
Data processing with information privacy and information utility has been emerged to manage distributed information expeditiously. In this paper, to deal with this advancement in privacy protective data processing technology victimization intensify approach of Random Decision Tree (RDT). Random Decision Tree provides higher potency and information privacy than Privacy secured Data mining Techni...
متن کاملPrivacy-Preserving Decision Tree Mining Using A Random Replacement Perturbation
Privacy-preserving data mining has become an important topic, and many methods have been proposed for a diverse set of privacy-preserving data mining tasks. However, privacy-preserving decision tree mining pioneered by [1] still remains to be elusive. Indeed, the work of [1] was recently showed to be awed [2], meaning that an adversary can actually recover the original data from the perturbed o...
متن کاملAn Improved Privacy-Preserving Collaborative Filtering Recommendation Algorithm
Privacy-preserving collaborative filtering is an emerging web-adaptation tool to cope with information overload problem without jeopardizing individuals’ privacy. However, Collaborative filtering with privacy schemes commonly suffers from scalability and sparseness. Moreover, applying privacy measures causes a distortion in collected data, which in turn defects accuracy of such systems. In this...
متن کاملAn Improved EMASK Algorithm for Privacy-Preserving Frequent Pattern Mining
As a novel research direction, privacy-preserving data mining (PPDM) has received a great deal of attentions from more and more researchers, and a large number of PPDM algorithms use randomization distortion techniques to mask the data for preserving the privacy of sensitive data. In reality, for PPDM in the data sets, which consist of terabytes or even petabytes of data, efficiency is a paramo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017914107